

What is the best way to do single stenting of coronary bifurcation ?

Y.Louvard, ICPS, Massy, Générale de santé, Ramsay, France

Bulgarian Bifurcation and Complex Coronary Interventions Course

22-23 January 2016 Tokuda Hospital, Sofia

Coronary anatomy and function

Coronary artery tree: pseudo-fractal object

X 0.75

Finet et al. Eurointrevention 2007; 490-8

W INSTITUT CARDIOVASCULAIRE PARIS SUD Benoit Mandelbrot (1924-2010): fractals

Structure-function scaling laws of vascular trees

* 2.3 (Huo-Kassab)

Adapted from G. Kassab

W INSTITUT CARDIOVASCULAIRE PARIS SUD Mathematical model of coronary arterial tree

From G. Kassab

Anatomy of Bifurcations

	Principle	Relation	Ratio Dm/Dd for Dd1~ Dd2	
Murray's law	Minimum Work	Dm3= Dd13 + Dd23	1.26	
HK: Huo- Kassab	Minimum Energy	Dm7/3 = Dd17/3 + Dd27/3	1.35	
Flow conservation	Qm= Qd1 + Qd2	Dm2= Dd12 + Dd22	1.4	
Finet	Measurement	Dm= <u>0.678 (</u> Dd1 + Dd2)	1.36	

The larger the SB, the larger the change in MV diameter throughout the bifurcation www.icps.com.fr

Courtesy of N Foin

O INSTITUT CARDIDVASCULAIRE PARIS SUD Choose the stent from the distal MB diameter

Pseudo fractal geometry and dedicated QCA

The bigger the SB the larger the overestimation of DM stenosis

Systematic underestimation of PM stenosis

Murray's law D13 = D23 + D33 Finet's law D1 = 0.67(D2 + D3) Huo Kassab law System221i6=022r@stilD2ation of SB ostial stenosis

Modified from PIE medical

Why so many bifurcation stenosis ?

Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries

High wall shear stress = antiatherogenic

Asakura, Circulation Research 1990; 66:1045-1066

Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries

Low wall shear stress = proatherogenic

Asakura, Circulation Research 1990; 66:1045-1066

Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries

www.icps.com.fr

Asakura, Circulation Research 1990; 66:1045-1066

W INSTITUT CARDIDVASCULAIRE PARIS SUD The low WSS values distribution is in accordance with the frequent localization of atherosclerosis lesion

www.icps.com.fr

Soulis et al. J of Biomechanics 2006;39:742

WINSTITUT CARDIOVASCULAIRE PARIS SUD Low wall shear stress and atheroma in bifurcation

Virmani, Chatzizisis

Stenting, bifurcation anatomy and wall stress

Best solution ?

WINSTITUT CARDIOVASCULAIRE PARIS SUD Restauration of initial flow (+ stent turbulences)

WSS < 0.5 Pa = risk of restenosis

Flow mediated NIH and neo-atheroma

www.icps.com.fr

Ku 1997, Malek et al. 1999

Virmani, Mintz ...

WINSTITUT CARDIDVASCULAIRE PARIS SUD Pathological Findings at Bifurcation Lesions: Impact of Flow Distribution on Atherosclerosis and Arterial Healing After Stent Implantation

	DES (12 Lesions, 17 Stents)			BMS (14 Lesions, 18 Stents)			p Value for DES vs. BMS	
	Flow Divider	Lateral	p Value	Flow Divider	Lateral	p Value	Flow Divider	Lateral
Neointimal thickness (mm)	0.07 (0.03-0.15)	0.17 (0.09-0.23)	0.001	0.26 (0.16-0.73)	0.44 (0.17-0.67)	0.25	0.0002	0.004
Fibrin deposition (% struts)	60 (21-67)	17 (0-55)	0.01	8 (0-33)	3 (0-21)	0.21	0.008	0.19
Uncovered struts (% struts)	40 (16-76)	0 (0-15)	0.001	0 (0-21)	0 (0-0)	0.10	0.004	0.38

www.icps.com.fr

Nakazawa, Virmani, J Am Coll Cardiol 2010;55:1679–87

Percentage of Patients With Atherosclerotic Changes in DES Versus BMS in Relation to Duration of Implant at Autopsy

Nakazawa et al. J Am Coll Cardiol Img 2009;2:625-8

Evaluation of Local Flow Conditions in Jailed Side Branch Lesions Using Computational Fluid Dynamics

Area of low WSS (<4 Pa) in 8-computational bifurcation models

www.icps.com.fr

SH. Na, BK. Koo, Korean Circ J 2011;41:91-96

INSTITUT CARDIOVASCULAIRE PARIS SUD Impact of stent mis-sizing and mis-positioning on coronary fluid wall shear and intramural stress

Effects of radial geographical miss or stent oversizing: 10% oversizing (A) and 20% oversizing (B)

Chen, Kassab, J Appl Physiol 115: 285–292, 2013

W INSTITUT CARDIDVASCULAIRE PARIS SUD Simulation of the microscopic process during initiation of stent thrombosis

Streamlines (left panels) and shear stress contours (right panels) for different strut heights, including 50 (top panels), 100 (middle panels), and 200 mm (bottom panels)

www.icps.com.fr

J. Chesnutt, Computers in Biology and Medicine 56 (2015) 182–191

Excess of Metal

www.icps.com.fr

Finn et al ACC 2005

Clinical datas about non-Left-Main bifurcation stenting

© INSTITUT CARDIDVASCULAIRE PARIS SUD Simple or Complex Stenting for Bifurcation Coronary Lesions: A Patient-Level Pooled-Analysis of Nordic 1 and BBC

Kaplan-Meier freedom from the composite event

www.icps.com.fr

Behan Circ Cardiovasc Interv. 2011;4:57-64

INSTITUT CARDIOVASCULAIRE PARIS SUD Simple or Complex Stenting for Bifurcation Coronary Lesions : A Patient-Level Pooled-Analysis of Nordic 1 and BBC

Primary outcome for individual subgroups

Favours Simple Favours Complex

Behan Circ Cardiovasc Interv. 2011;4:57-64

W INSTITUT CARDIDVASCULAIRE PARIS SUD Randomized study comparing Double Kissing Crush with Provisional Stenting for treatment of coronary bifurcation lesions: DK-CRUSH-II

Comparison of Survival Rate Free From TLR Between DK Crush and PS Groups

www.icps.com.fr

SL Chen J. Am. Coll. Cardiol. 2011;57;914-920

Randomized study comparing Double Kissing Crush with Provisional Stenting for treatment of coronary bifurcation lesions: DK-CRUSH-II

Clinical outcome (2)

	DK Group (n = 185)	PS Group (n =185)	p Value
Procedural success	179 (96.8)	173 (93.5)	0.217
At 6-month			
Cardiac death	1 (0.5)	2 (1.1)	1.000
мі	6 (3.2)	4 (2.2)	0.751
CABG	O (O)	1 (0.5)	0.500
TLR	2 (1.1)	6 (3.2)	0.284
TVR	3 (1.6)	8 (4.3)	0.220
MACE	6 (3.2)	11 (5.9)	0.321
Stent thrombosis definite	4 (2.2)	1 (0.5)	0.372
At 12-month			
Cardiac death	2 (1.1)	2 (1.1)	1.000
мі	6 (3.2)	4 (2.2)	0.751
CABG	0 (0)	1 (0.5)	0.500
TLR	8 (4.3)	24 (13.0)	0.005
TVR	12 (6.5)	27 (14.6)	0.017
MACE	19 (10.3)	32 (17.3)	0.070
Stent thrombosis	5 (2.7)	2 (1.1)	0.449
Definite	4 (2.2)	1 (0.5)	0.372
Possible	1 (0.5)	1 (0.5)	1.000

Follow-up coronary angiography at 8 months

www.icps.com.fr

SL Chen J. Am. Coll. Cardiol. 2011;57;914-920

W INSTITUT CARDIOVASCULAIRE PARIS SUD Bifurcation lesion treatment principles

- **Limit the number of stents (carena)**
- 2. Apposition (no overlapping ?)
- **3.** Respect the original anatomy (speculative)

Provisional SB stenting strategy

Provisional Side Branch Stenting

VINSTITUT CARDIOVASCULAIRE PARIS SUD Patient's specific simulation

VINSTITUT CARDIDVASCULAIRE PARIS SUD Predictors and Outcomes of SB Occlusion After Main Vessel Stenting in Coronary Bifurcation Lesions Results From the COBIS II Registry

Independent Predictors of SB Occlusion

Variable	Odds Ratio (95% CI) (range)	p Value
Pre-procedural %DS of the SB \geq 50%	2.34 (1.59-3.43)	<0.001
Pre-procedural %DS of the proximal MV ≥50%	2.34 (1.57-3.50)	0.03
SB lesion length	1.03 (1.003-1.06)	<0.001
Acute coronary syndrome	1.53 (1.06-2.19)	0.02
Left main lesions (vs. non-left main lesions)	0.34 (0.16-0.72)	0.005

W INSTITUT CARDIOVASCULAIRE PARIS SUD IVUS findings of Carina shift vs. Plaque shift

Both plaque shift and carina shift -> Aggravation of SB luminal narrowing after MB stent implantation

www.icps.com.fr

After stenting

from Bon Kwon Koo, EBC

INSTITUT CARDIOVASCULAIRE PARIS SUD Why the POT ?

To give to the cross over stent the 2 diameters of the 2 covered segment (respect the anatomy/function)

To exchange safely the wires for kissing (no exchange outside the undeployed proximal part of the stent)

Open the stent cells in front of the SB ostium (better access for balloon/stent)

Post-dilatation expansion and DES designs

Balloon Max. size		35555			<u>IXX</u>	
	Element	Xience	Taxus	Integrity	BioMatrix	Cypher
4.0	Very Small WH (2 cells) <i>max</i> <i>exp.: 3.0mm</i>	Medium Workhorse (6 crowns , 3 cells)	Small workshorse (6 crowns, 2 cells)	Small workhorse (7crowns, 2 cells*) <i>max</i>	Medium workhorse (6 crowns, 2 cells)	Medium workhorse (6 crowns, 6 cells)
2.50	Small workshorse (8	4.4mm	max expansion: 3.4mm	expansion: 4.9mm *1.5 cell in	4.6mm	4.7mm
2.75	crowns, 2 cells) max expansion : 3.8mm		Medium Workhorse (9 crowns, 3 cells)	Resolute		
5.0	Medium Workhorse (8 crowns, 2 cells)		max expansion: 4.8mm	Medium workhorse (10 crowns, 2 cells) max expansion :		
3.50	max expansion : 4.4mm	Large workhorse: (9 crowns , 3 cells) max expansion :		5.4mm	Large workhorse (9 crowns, 3 cells) max expansion:	Large workhorse (7 crowns, 7 cells) max expansion:
4.00	Large workhorse (10 crowns, 2 cells) <i>max</i> <i>expansion:</i>	5.6mm	Large workhorse (9 crowns, 3 cells) <i>max</i> expansion:		(5.9mm) (5.8mm
6.0 4.50	5.7mm		6.0mm			
5.00	> Mini > Limi	mal stent LD ex ted to 6.0 mm S	cluding struts SC balloon at 1-	4 ATM		

Stent MLD (inner lumen) achieved after stepwise overexpansion and 2x final post-dilatation

Wire exchange

MB wire: long shape !

Wire exchange

MB wire: long shape !

Wire exchange

SB wire: short loop !

VINSTITUT CARDIOVASCULAIRE PARIS SUD Proximal vs distal recrossing toward side branch

VINSTITUT CARDIOVASCULAIRE PARIS SUD POT <u>+</u> Kissing balloon inflation

W INSTITUT CARDIDVASCULAIRE PARIS SUD Long-term Clinical outcomes of final KB in coronary bifurcation lesions treated with the 1-stent technique: results from the COBIS II registry

Clinical Outcomes in FKB Group Compared With Non-FKB Group in Propensity-Matched Population During FU Period

	FKB (n = 545)	Non-FKB (n = 545)	Unadjusted HR (95% CI)	p Value	Adjusted HR* (95% CI)	p Value
All-cause death	17 (3.1)	20 (3.7)	0.67 (0.30-1.48)	0.32	0.68 (0.28-1.63)	0.39
Cardiac death	3 (0.6)	8 (1.5)	0.43 (0.11-1.66)	0.22	0.50 (0.11-2.29)	0.37
MI	4 (0.7)	5 (0.9)	0.50 (0.09-2.73)	0.42	0.18 (0.01-20.36)	0.48
Stent thrombosist	3 (0.6)	4 (0.7)	0.72 (0.16-3.23)	0.67	0.77 (0.17-3.45)	0.73
Target lesion revascularization	32 (5.9)	43 (7.9)	0.53 (0.30-0.94)	0.03	0.51 (0.28-0.91)	0.02
Main vessel	31 (5.7)	40 (7.3)	0.53 (0.30-0.96)	0.04	0.51 (0.28-0.93)	0.03
Side branch	12 (2.2)	18 (3.3)	0.57 (0.24-1.36)	0.21	0.57 (0.24-1.37)	0.21
Both vessels	23 (4.2)	38 (7.0)	0.47 (0.25-0.88)	0.02	0.47 (0.25-0.90)	0.02
MACE‡	37 (6.8)	53 (9.7)	0.54 (0.32-0.89)	0.02	0.50 (0.30-0.85)	0.01

*Adjusted covariates include hypertension, history of coronary artery bypass graft, and distal RD of SB

www.icps.com.fr

CW Yu, J Am Coll Cardiol Intv 2015;8:1297–307

INSTITUT CARDIOVASCULAIRE PARIS SUD Non compliant balloons for kissing

Semi-Compliant Balloon (Ryujin Plus, Terumo) Non-Compliant Balloon (Hiryu, Terumo)

Kinoshita, EBC 2009

XI European Bifurcation Club meeting - Athens - Greece - September 2015

(re)-Proximal Optimazing Technique in provisional coronary bifurcation stenting *The full version...*

Gérard Finet MD PhD

On behalf of F. derimay, P. Motreff, P. Guerin, P. Pilet, J. Ohayon, O. Darrement, G. Rioufol

Department of Cardiology and Interventional Cardiology Cardiovascular Hospital - Hospices Civils de Lyon INSERM Research Unit 1060 CarMeN Claude Bernard University Lyon 1 Lyon - France

gerard.finet@univ-lyon1.fr

Balloon positioning for the POT

The rePOT sequence

RESULTS

Comparison of ellipticity index, global malapposed strut ratio (%), and strut obstruction ratio in side branch ostium (SBO) (%)

Significant Post Stenting SB Stenosis: QCA vs FFR

(jailed side branch lesions, n=94)

Bon-Kwon Koo et al JACC 2005; 46: 633-7

SB Ostial Lesions Are Overestimated

EBC

T or TAP ?

INSTITUT CARDIOVASCULAIRE PARIS SUD T or TAP ? (stent boost)

INSTITUT CARDIOVASCULAIRE PARIS SUD ACS ST-, ulcerated LAD1,LAD1,Diag1 bifurcation 1,0,1

INSTITUT CARDIOVASCULAIRE PARIS SUD Ulcerated LAD1,LAD1,Diag1 bifurcation 1,0,1

INSTITUT CARDIOVASCULAIRE PARIS SUD LAD1,LAD1,Diag1 bifurcation 1,0,1

INSTITUT CARDIOVASCULAIRE PARIS SUD 2 BMW wires

INSTITUT CARDIOVASCULAIRE PARIS SUD Predilatation with 2.5 X 20 mm (length)

INSTITUT CARDIOVASCULAIRE PARIS SUD Nobori 3x24 mm from LAD to Diagonal

INSTITUT CARDIOVASCULAIRE PARIS SUD Post stenting

INSTITUT CARDIOVASCULAIRE PARIS SUD POT with a 3.5X9 mm balloon

INSTITUT CARDIOVASCULAIRE PARIS SUD Post kissing

- Good knowledge of anatomy / fonction of a coronary bifurcation is useful for classification, quantification and treatment of coronary bifurcation stenosis
- In the majority of situations a bifurcation stenosis can be treated with 1 (or even 2 stents) using the Provisional SB stenting strategy
- Choice of an adapted stent with a diameter of the DM segment is followed by a POT using a short balloon adapted to PM segment diameter, final kissing balloon inflation is useful when the SB is big (alternative: POT, Side, POT ?)
- When the access to SB is very difficult, SB may be stented first (mini DK crush)
- Clinical validation of informations coming from patient specific simulation is necessary
- Treatment principles: limit stent number, apposition, respect initial anatomy