BBCCIC, Sofia, 2016

Gianluca Rigatelli, MD, PhD, EBIR, FACC, FESC, FSCAI

Cardiovascular Interventions Unit Rovigo General Hospital Italy

How Should I Treat: Complex Distal Left Main II

Dr Rigatelli has not conflict of interest to disclose in this presentation

CASE: 11.10 am, Cath Lab 2, Rovigo General Hospital

Emergency call by 118 (our 111):

-Male, caucasian, 73 year-old

-symptom onset 10.45 am

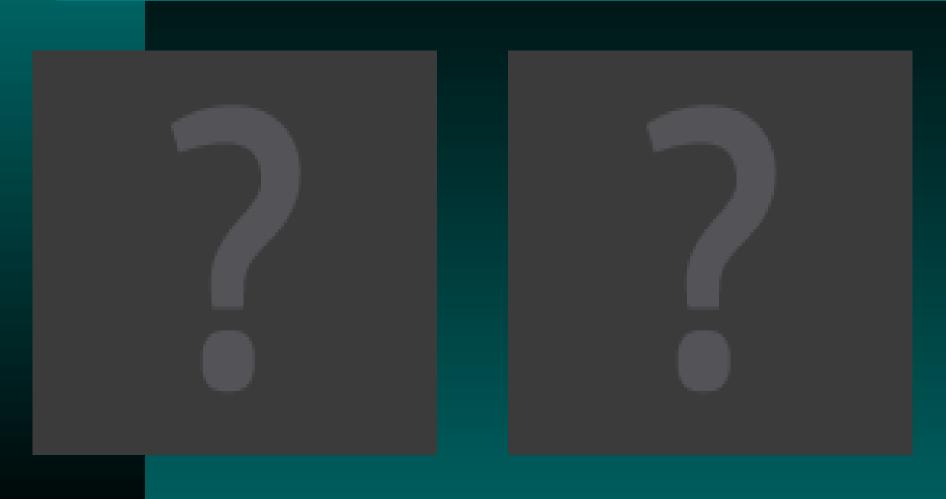
-Transferred to primary referral center:

1-Troponin I° essay 8.7

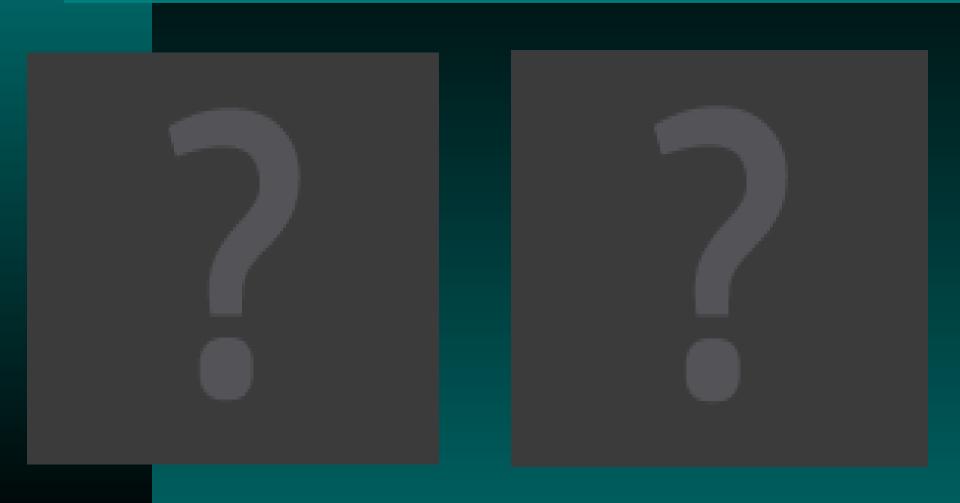
2 -Inferior ,Lateral and Anterior STEMI

-medical history: hypertension, smoke habitus, hypercholesterolemia

CASE: 11.25 am, Cath Lab 2, Rovigo General Hospital


After Brilique 2 cp, Heparin 5000 U and Flectadol 250 mg ev, the patient has been trasferrred to our Center for primary PCI. At his arrival:

- -Angina still present
- -Killip 2
- -Radial pulse present



Coronary Angiography Findings 1

Coronary Angiography Findings 1

How Should I Treat?

1. Deferral to surgery

PRO

Complex LM: distal+Ostia LAD-LcX, Suboccluded Ramus, Occuded RCA CONTRA

Unstability AMI ongoing

2. Complex PCI

Pz on the table Ready to do Faster than trasfer Impella unavailable IABP unuseful (?) Ramus high risk to be lost No time for IVUS

4 minutes after diagnostic (11.35 am), pt crushed down....

.....PAO 70/40 mmHg, Killip 3, angina worsened.....Ok , PCI

DISADVANTAGES

Stenting LM to LAD T stent LCx, Protecting Ramus

Potential difficulties in gaining the LCx after stenting LM-LAD, High risk to loose the Ramus

CULOTTE

Not so quick to do, large amount of metal into the LM, unfavourable angle

DK Krush

Time consuming, multiple kissing, prolonged inflations

What we need?

Operator needs:

- Very quick easy techinque with a few steps and low number of prolonged inflations
- 2 Easy recrossing of the jailed vessels
- Ensuring patency of both LAD and LCx and evetually Ramus with low metal amount

Patient's needs:

- 1 Fast improvement of haemodynamics
- 2 Fast angina relieves
- 3 Accepatble long-term outcomes

Inflation of Ramus

After initial predilation

LCx NC Baloon withdrawing and LAD Stent Crush at 20 atm

LAD Orsiro 3.5 x 18 stent protruding 1 cell+distal NC 3.0 x 15 ballon in the LCx

POT with short NC 4.0/6 mm balloon

Final Kissing with Nc balloon 20 atm

Final result Spider view

Final result AP cranial view

At the end....

11.25 Pt arrival in the cath lab: coronary angiography

11.35 pt crushed down: pao 60/40 mmHg

11.36 PCI started

11.57 PCI ended: total contrast volume 137 ml

Final aortic pressure 110/75 mmHg, angina resolved completely in further 30 minutes, Troponin peak 75 ng/ml Discharged after 7 days hospital staying, 3-month FU: Anterolateral Q wave, EF 43%

Some considerations...

Well known techniques for LM bifurcation:

- **✓ DK crush**
- ✓ Culotte
- √ T-stenting
- **✓ TAP**
- ✓ Mini-crush

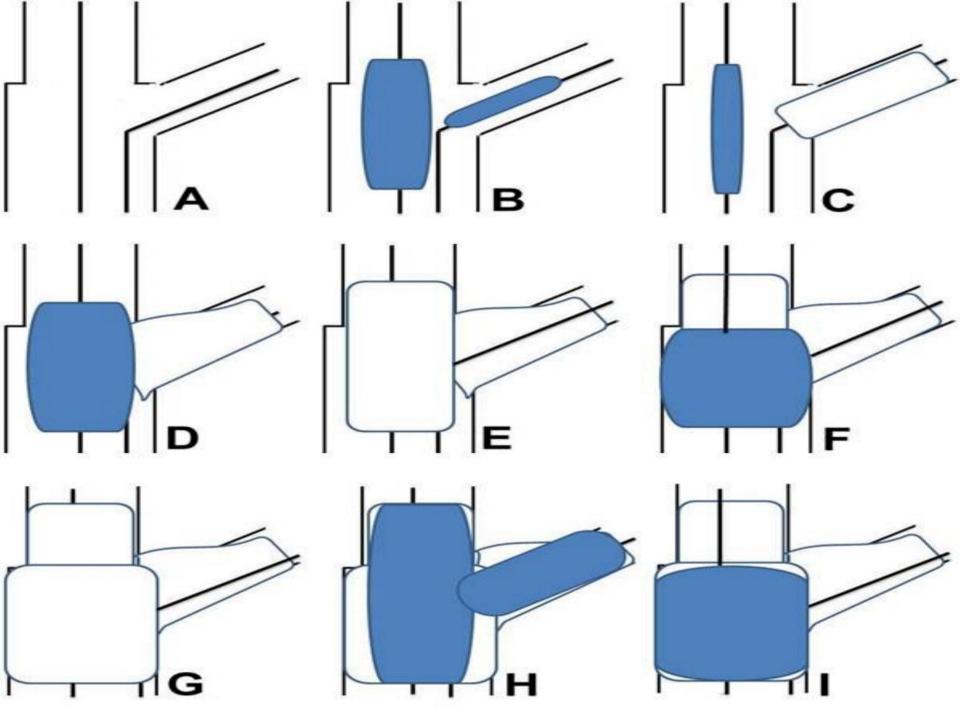
Possible dark zone:

- ✓ Unknow impact of multiple layer of metal or metal+bioplymer into the carena >>>Lower shear stress force
- ✓ Applicability to a certain angle
- ✓ Not universal applicability to 6F radial approach
- ✓ Sometimes time and cost consuming

Concepts of Nano-crush

- Minimal crush (1 cell only possibly)
- ✓ Orsiro (Biotronik)very thin strut(60-80 Micron)
- ✓ Possibly applicable in a large variety of MB/SB angles

- Minimizing the amount of metal into the carena using very thin stent struts
- Ensuring SB ostium coverage
- Enhancing simplicity
- Applicable to 6F radial sheath


Nano-crush: Steps

- Intravascular ultrasound evaluation of the LAD/CX diameter and lesion length: pre-dilation using non- compliant balloons on the basis of IVUS findings with 1:1 ratio at nominal atmospheres (atm)
- 2 Wiring both branches
- Predilate sequentially or simultaneously both branches with non compliant balloons.
- Stent deployment on Side Branch (SB) mantaining a noncompliant balloon of the same diameter of Main Branch (MB) into the MB
- Widrawing the stent balloon of the deployed stent and inflating the main branch at high pressure (around 20 atm)

Nano-crush: Steps

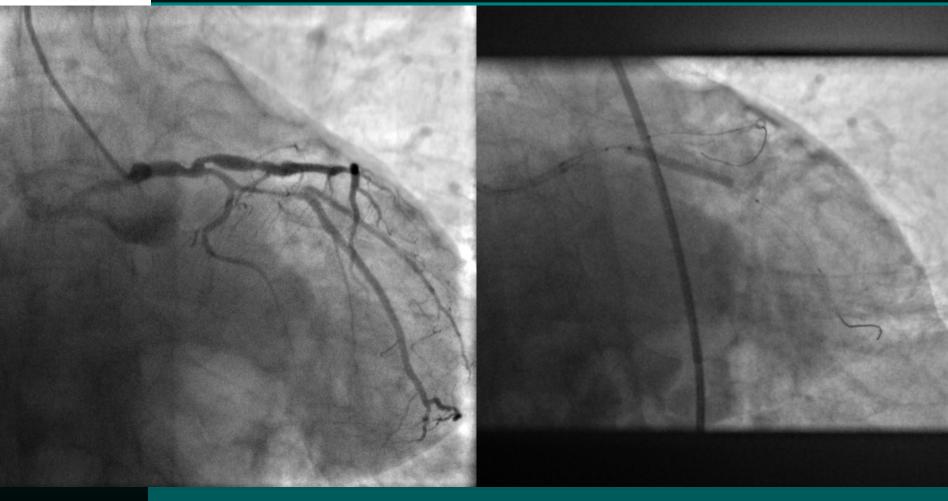
- Deploying the MB stent of the diameter of the distal reference diameter
- Proximal optimization technique (POT) with non-compliant balloon of the same diameter of the main branch
- **Rewiring SB**
- Snuggle kissing overexpansion
- 10 Final re-POT.

SINTAX score

23.3±7.2

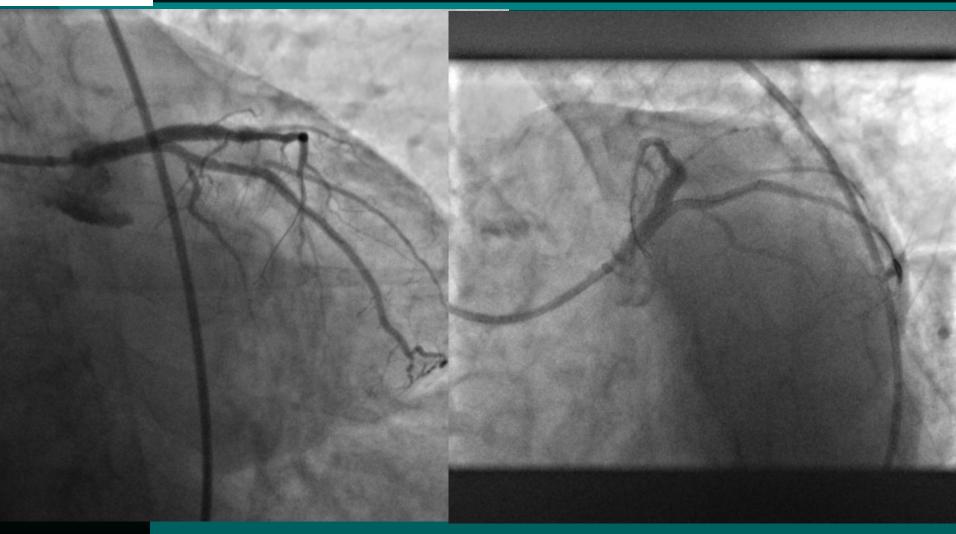
Preliminary experience

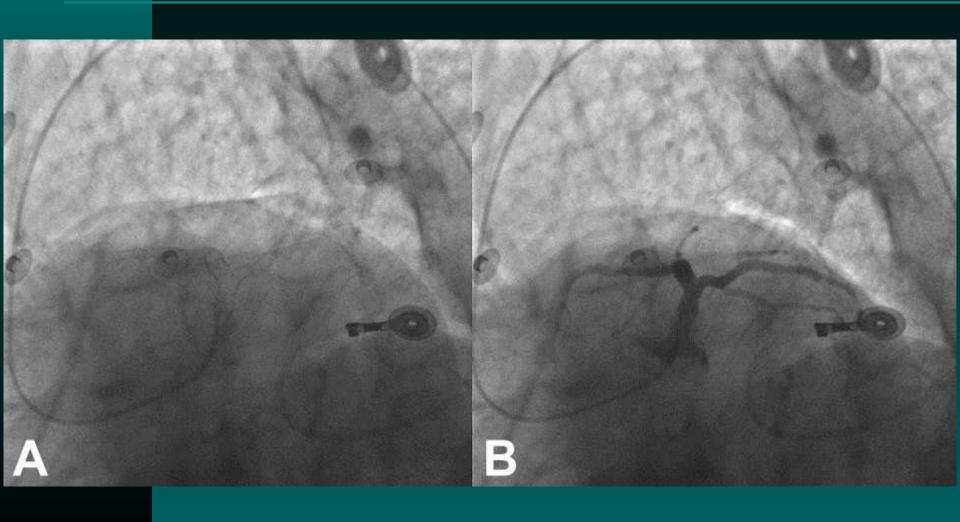
	N° 14 (%)	
Hypertension	12 (85.7)	
Hypercholesterolemia	10(71.4)	
Diabetes	7(50)	
Smoking	10(71.4)	 As estimated by angiography the mean treated LM
Valvular heart disease	2(14.2)	stenosis was 80.4± 10.6 % whereas it was
EF (%) (<u>+</u> SD)	45.2±8.6	87.5± 9. % by IVUS estimation.
CCS class (±SD)	2.4±0.7	
Transient ischemic attack/stroke	1 (7.1)	
Heart failure	3 (21.4)	 Mean angle between Left main (LM) and Left
Severe COPD	3 (21.4)	Circumflex (LCx) was 63.6± 21.3° (range 37 to 101°).
Peripheral arterial disease	4 (28.4)	
Carotid artery disease	3 (21.4)	 The mean diameter and length of implanted stents
Rest angina	5(35.7)	was 3.9±0.8 mm and 27.1±8.7 mm in LM and 3.1±0.3
Non-ST elevation ACS	9(54.3)	
ST-elevation ACS	0(0)	mm and 22.1±.7.1 mm in LCx.
1-vessel disease	0(0)	
2-vessel disease	8(57.1)	 Fluoroscopy time and procedural time were 12.7±
3-vessel disease	6(42.8)	10.4 and 35.6± 9.2 minutes, respectively
Medina classification		
0,1,1	4 (28.4)	
1,1,1	10(71.4)	


Preliminary experience: follow-up

- Angiographic follow-up was available in 8/14 patients (57.1%) at a mean time from the procedure of 6.4±0.5 months and showed no significant angiographic restenosis.
- Clinical follow-up was available for 100% of patients: at a mean follow-up of 8.0 ±2.6 months, no patient death, or acute myocardial infarction, stent thrombosis or TVR were observed.


		QCA					IVUS			
Vessel		Baseline			FU	Baseline		Post	FU	
	Ca	MLD	%	MLD	MLD	N	ИLA	CSA	CSA	
DLM	5/8(62.5)	1.9±1.2	80.4± 10.6	4.2±0.7	4.1±0.9		2.10±0.8	10.2±0.5	9.9±0.7	





Immediate

7 months follow-up

Take Home Messages

Cardiogenic shock patients with distal/bifurcation LM are really sick patients:

- 1. Consider simple easy technique
- 2. Avoid multiple crushing
- 3. Avoid multiple long balloon inflations
- 4. Avoid multiple stent recrossing

Be Quick Be effective

