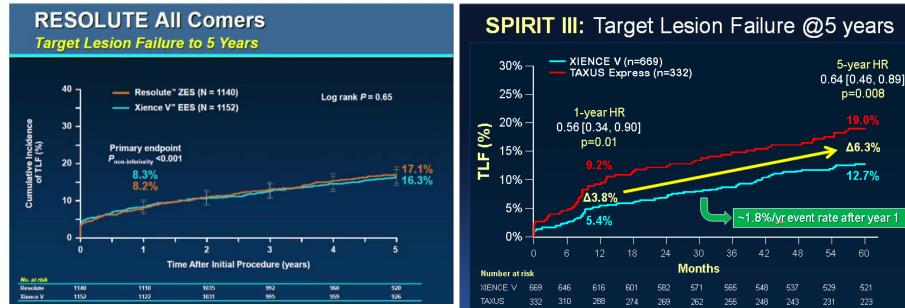


An update on bioresorbable coronary devices.

Ferenc Nagy MD,PhD University of Szeged, Hungary



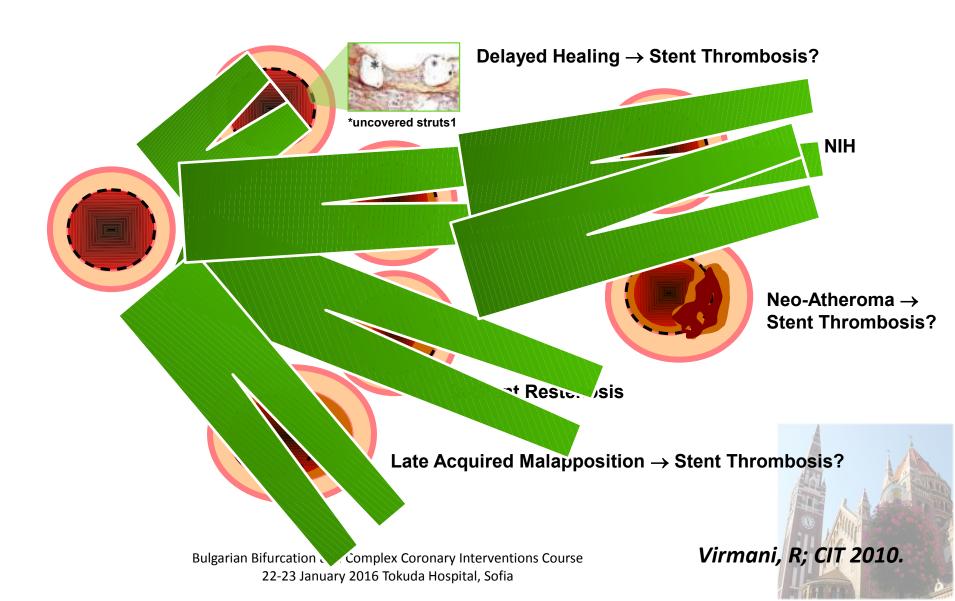
Long Term limitations of

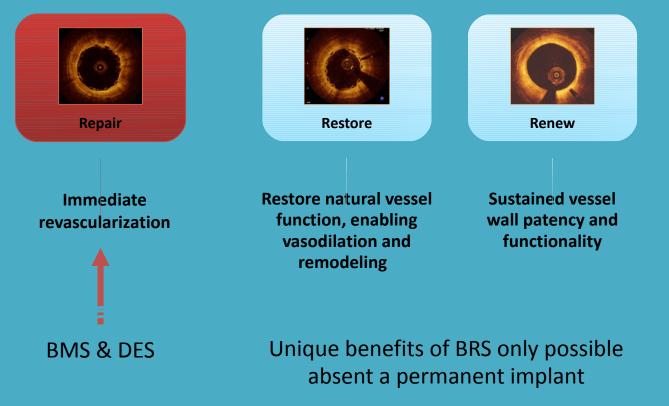
Permanent Metallic Implants Continuous Increase in Events over Time

with Current Generation DES

TLF = cardiac death, target vessel MI, or clinically-driven TLR

TLF = cardiac death, target vessel MI, or ischemic-driven TLR


Windecker, PCR 2014


Gada H, et al., J Am Coll Cardiol Intv 2013

'Caged' (Stented) Vessel

RJ van Geuns, Cohort B OCT images

Potential advantages of BRS vs metallic stents

Restored Vessel Function

Late Lumen Gain

Plaque Regression

Non-Invasive Imaging (MSCT)

Reintervention in the Treated Segment (CABG)

Basic material	MAGNESIUM			OTHER			
Scaffold name	AMS	DREAMS 1.0	DREAMS 2.0	REVA BRS	REVA ReZolve	Ideal BioStent	
Manufacturer	Biotronik, Berlin, Germany	Biotronik, Berlin, Germany	Biotronik, Berlin, Germany	Reva Medical Inc., San Diego, CA, USA	Reva Medical Inc., San Diego, CA, USA	Xenogenics Corp., Canton, MA, USA	
Composition	Magnesium and rare earth metals	Magnesium and rare earth metals	Magnesium and rare earth metals	Desaminotyrosine polycarbonate	Desaminotyrosine polycarbonate	Poly-lactic anhydride containing 2 salicylic acid molecules linked to 1 sebacic acid molecule	
Design of the latest generation	4-crown design	6-crown design	6-crown design	Slide-and-lock ("ratchet")	Slide-and-lock ("ratchet")	Tube with laser-cut voids	
Thickness of strut, µm	165	120	150	204	122	200	
Visualization	Latest g	eneration with radiopaque	markers	Fully radiopaque	Fully radiopaque		
Special feature	Electronegative charge that emerges during degradation process has an antithrombotic function			-	Polymer causes less inflammation		
Anti- proliferative drug elution	No	Paclitaxel	Sirolimus	Paclitaxel	Sirolimus	Sirolimus	
Resorption time	2 mos	9-12 mos		2-3 yrs	2-3 yrs	15 mos	
Status	Clinical evaluation	Clinical evaluation	Clinical evaluation	Clinical evaluation; CE trial ongoing	Clinical evaluation; CE trial ongoing	Clinical evaluation, pre- clinical evaluation of the thinner 2nd generation	

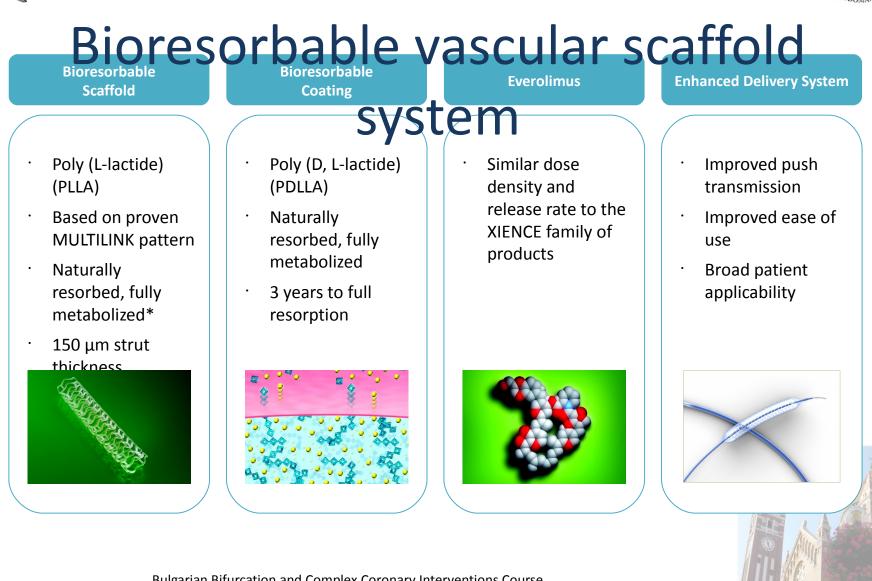
Bulgarian Bifurcation and Complex Coronary Interventions Course 22-23 January 2016 Tokuda Hospital, Sofia

Wiebe J., et., JACC 2014

BRS under current development

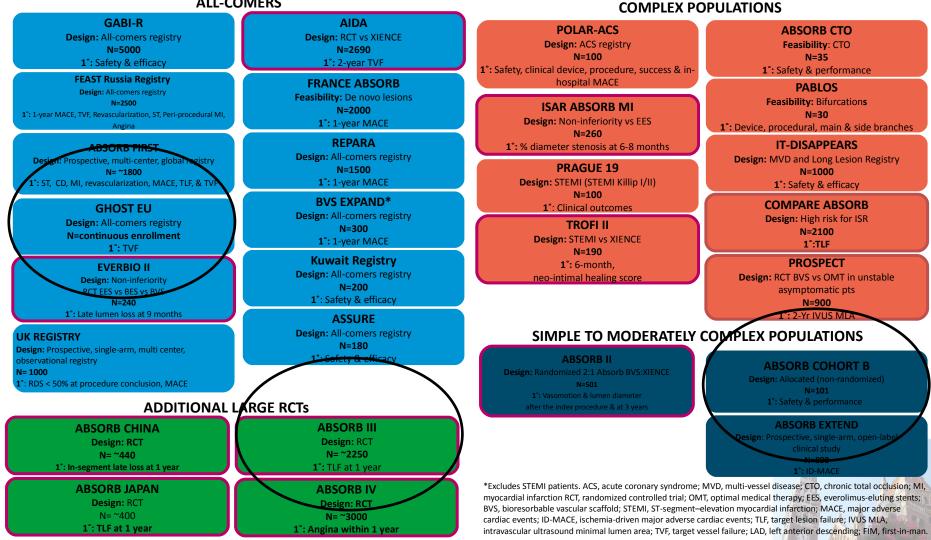
Basic material				PO	LY-LACTIC ACIE)			
Scaffold name	Igaki-Tamai Stent	Absorb BVS 1.0	Absorb BVS 1.1	DESolve 1st generation	DESolve 2nd generation	Amaranth	ART18Z BRS	Xinsorb BRS	Acute BRS
Manufacturer	Kyoto Medical Planning Co, Ltd, Kyoto, Japan	Abbott Vascular, Santa Monica, CA, USA	Abbott Vascular, Santa Monica, CA, USA	Elixir Medical Corp., Sunnyvale, CA, USA	Elixir Medical Corp., Sunnyvale, CA, USA	Amaranth Medical Inc., CA, USA	Arterial Remodeling Tech., France	Shandong HuaAn Biotech., Co. Ltd., China	OrbusNeich, Fort Lauderdale FL, USA
Composition	PLLA	PLLA	PLLA	PLLA	PLLA	PLLA	PLLA, PDLA	Poly-lactic acid, poly ε-caprolactone, poly-glycolic acid	PLLA, L-latic-co-ε- caprolactone, PDLA
Design of the latest generation	Zigzag helical coil	Out-of-phase sinusoidal hoops with links	In-phase zigzag hoops, cross-linked by bridges	Tubularly arranged hoops, linked by bridges	Tubularly arranged hoops, linked by bridges	Zigzag hoops, linked by bridges	Creep- resistant hinge		Helically linked double ring
Thickness of strut, µm	170	150	150	50	150			150-170	150
Visualization	Gold radio- paque markers at both ends	Radiopaque metal markers at both ends	Radiopaque metal markers at both ends	2 platinum radiopaque markers	2 platinum radiopaque markers		-	2 radiopaque markers	Radiopaque markers
Special feature	Self- expandable when heated	-	-	Minor malapposition is self-corrected	Minor malapposition is self-corrected	Consists of multiple layers		Radial strength is comparable to that of DES	Dual elution
Anti- proliferative drug elution	No	Everolimus	Everolimus	Myolimus	Novolimus	No	No	Sirolimus	Abluminal side: sirolimus Luminal: CD34+ antibodies
Resorption time	3 yrs	Up to 3 yrs	Up to 3 yrs	1 yr	1 уг	1–2 yrs	1.5-2 yrs		
Status	CE mark (for peripheral use)	randomized- BVS vs. DES enrolling	pronary use); controlled trial) s currently patients		coronary use)	Clinical evaluation, new version under dev.	Clinical evaluation	30 patients enrolled in FiM study	Pre-clinical evaluation

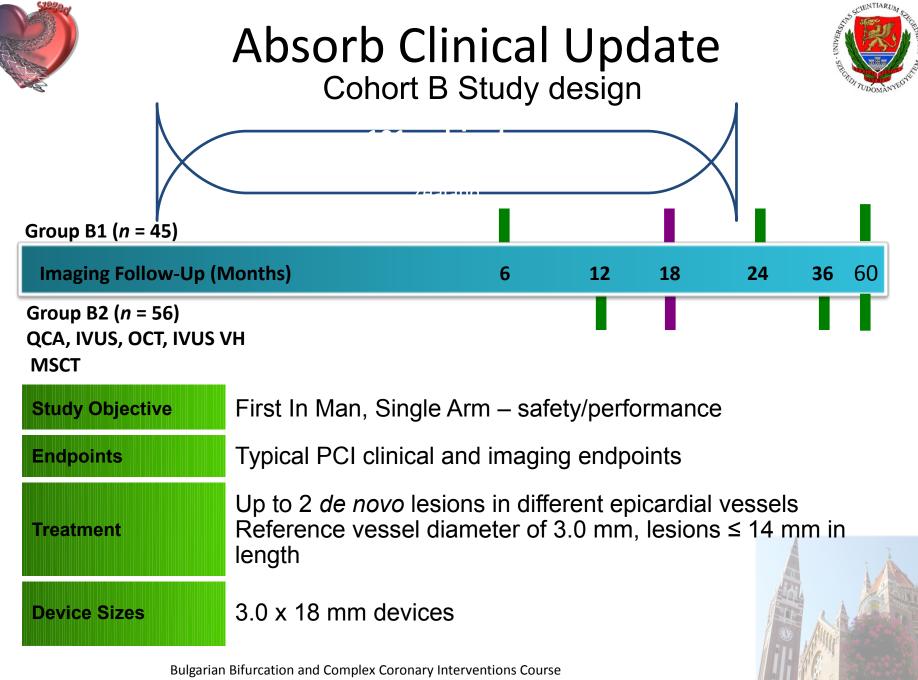
Bulgarian Bifurcation and Complex Coronary Interventions Course


22-23 January 2016 Tokuda Hospital, Sofia

Wiebe J., et., JACC 2014

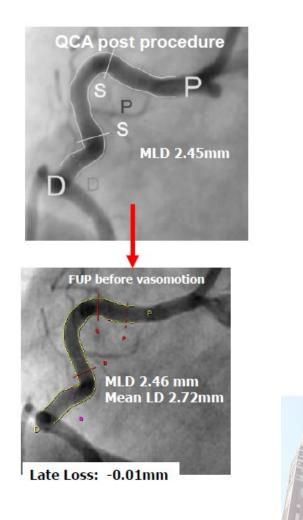
Absorb




Ongoing Absorb Studies Randomized Controlled City

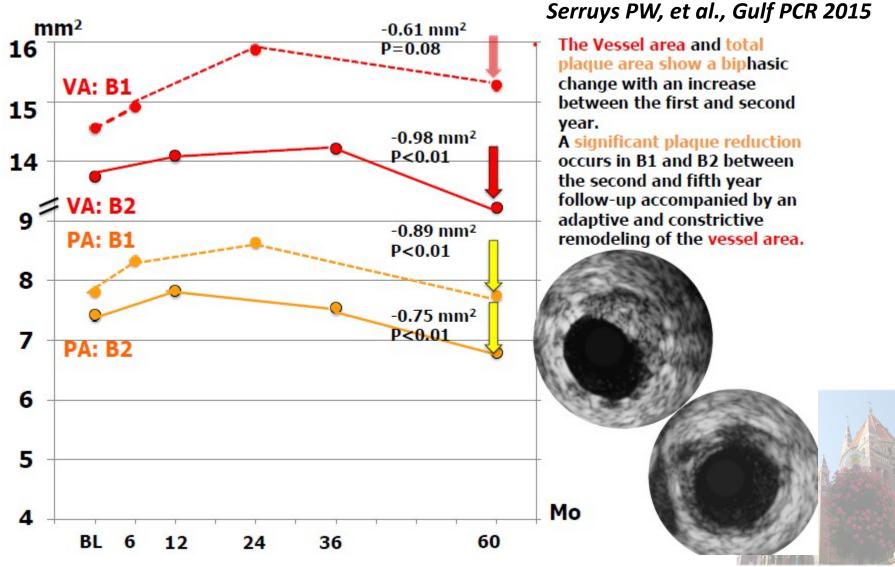
All comparative claims of catheter design improvements are based on internal studies versus Absorb BVS. Data and images on file at Abbott Vascular. Bulgarian Bifurcation and Complex Coronary Interventions Course

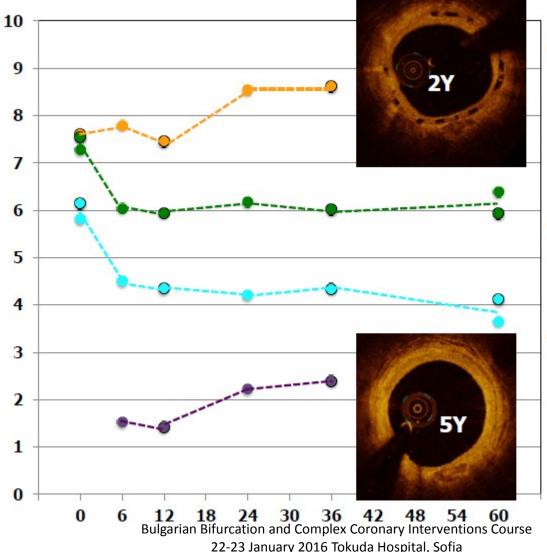
22-23 January 2016 Tokuda Hospital, Sofia



Angiographic follow up to 5 years

22-23 January 2016 Tokuda Hospital, Sofia


ons Course Serruys PW, et al., Gulf PCR 2015



IVUS follow up to 5 years

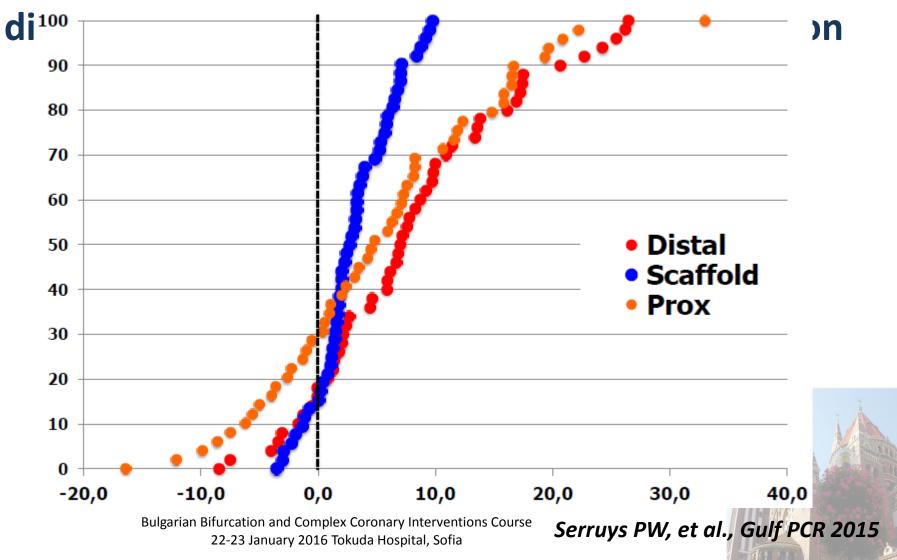
OCT follow up over 5 years

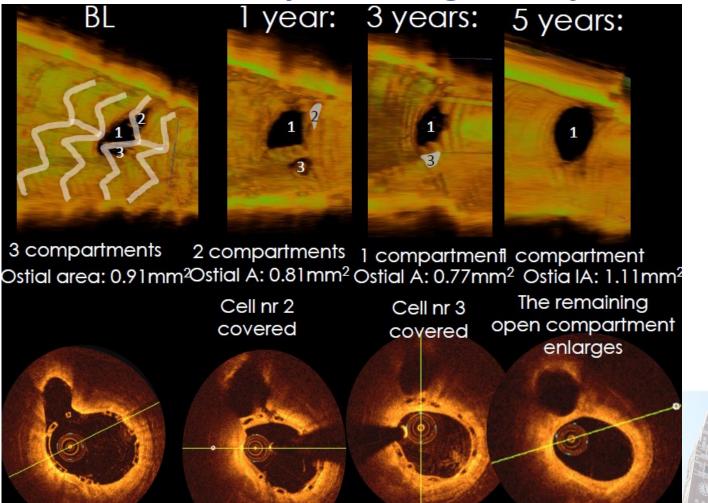
On OCT, the mean and minimum scaffold area increased significantly in the first 3 years. Thereafter struts are no longer discernible at 5 years.

The mean lumen area and minimal lumen area were stable from 1 year to 5 years.

The neointima between and on top of struts are no longer measurable at 5 years since the struts are not discernible on OCT at 5 years.

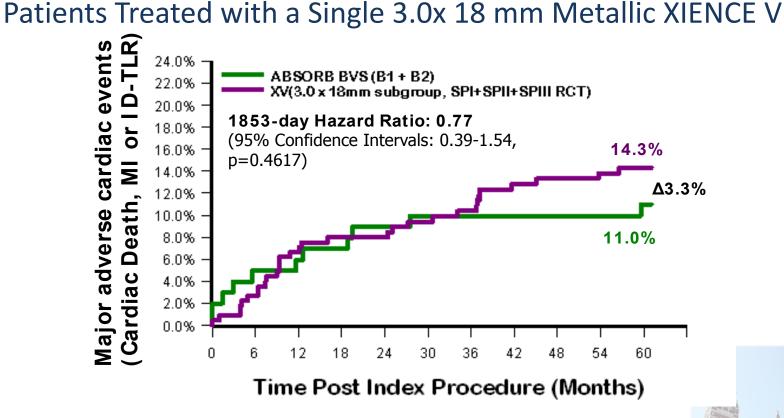
Мо


Serruys PW, et al., Gulf PCR 2015


Vasomotion test (relative changes in lumem

Side branch jail through five years

Bulgarian Bifurcation and Complex Coronary Interventions Course 22-23 January 2016 Tokuda Hospital, Sofia


Serruys PW, et al., Gulf PCR 2015

ABSORB Cohort B

KM Estimate of MACE Rate in Patients Treated with Absorb vs.

Bulgarian Bifurcation and Complex Coronary Interventions Course 22-23 January 2016 Tokuda Hospital, Sofia Serruys PW, et al., TCT 2015

ABSORB III – Trial Design

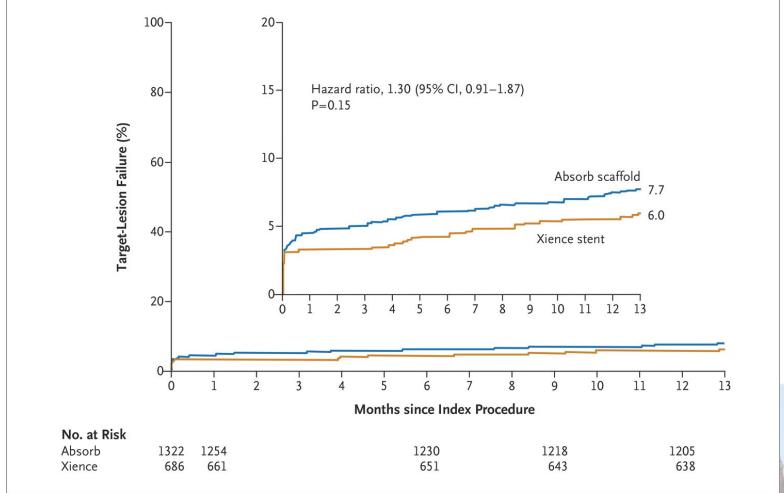
Prospective, Multi-Center, Randomized Clinical Trial 2:1 Randomization Absorb versus XIENCE n = 2,000 patients

Absorb	XIENCE
n = 1322	n = 686

Primary Endpoint	Target Lesion Failure at 1 year, powered for non-inferiority in 2000 clinical follow-up subjects				
Powered Secondary	 Site diagnosed angina at 1 year test for superiority of Absorb to XIENCE (n = 2000) Nitrate-induces vasomotion at 3 years by QCA, superiority of Absorb to 				
Endpoints	 XIENCE (n = 200) Mean lumen area change from post-procedure to 3 years by IVUS, superiority of Absorb to XIENCE (n = 150) Diabetic subgroup to support diabetic indication of Absorb 				

Kereiakes D, et al., TCT 2015

ABSORB III - Patient/Lesion Demographics


	Absorb (N=1322 patients)	XIENCE (N=686 patients)	P-value
All Diabetes, %	31.5%	32.7%	0.60
Prior PCI	38.7%	38.0%	0.75
Stable Angina, %	57.3%	60.8%	0.13
Unstable Angina, %	26.9%	24.5%	0.25
B2/C lesions, %	68.7%	72.5%	0.08
Lesion Length (mm)	12.60	13.12	0.05
RVD <2.25	18%	19%	0.39

Kereiakes D, et al., TCT 2015

ARCORR III 1 Voor Clinical Paculte TIE

Bulgarian Bifurcation and Complex Coronary Interventions Course 22-23 January 2016 Tokuda Hospital, Sofia

Ellis SG et al. N Engl J Med

ABSORB III - 1-Year Clinical Results

1 Year Clinical Outcomes	Absorb N=1,322	XIENCE N=686	P-Value	
TLF	7.8%	6.1%	0.16	Primary Endpoint
ID-TLR	3.0%	2.5%	0.50	
TV-MI	6.0%	4.6%	0.18	
Cardiac Death	0.6%	0.1%	0.29	
Definite/Probable ST	1.5%	0.7%	0.13	Not powered
Angina (self-reported)	18.3%	18.4%	0.92	Secondary Endpoint

In vessels ≥2.25 mm by QCA*, ST = 0.9% versus 0.6% for Absorb versus XIENCE, respectively (P=0.12)

*The majority of patients (83%) in ABSORB III had vessels ≥2.25 mm

Clinical outcomes at 1 year demonstrated comparable safety and efficacy between

Absorb and XIENCE in a large, pivotal randomized clinical trial

Bulgarian Bifurcation and Complex Coronary Interventions Course 22-23 January 2016 Tokuda Hospital, Sofia Kereiakes D, et al., TCT 2015

Residual angina after successful PC (20%)

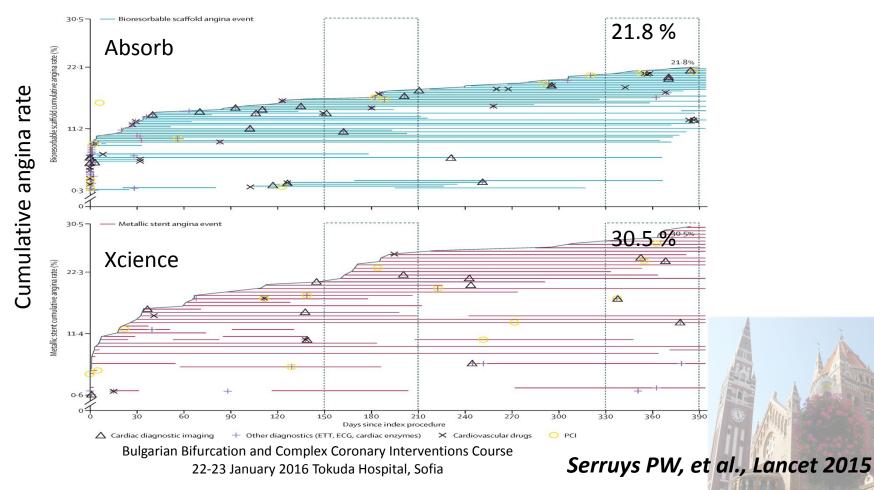
Multiplex etiology:

•

- Non cardiac origin
- Incomplete revascularization/restenosis
- Stent fracture
- Endothel dysfunction
- Impaired vasomotion

Neurogenic pain from endoluminal

penetrin aftrainad on pletophin Ingrentious Srse 22-23 January 2016 Tokuda Hospital, Sofia



Absorb II/ angina reporting

New or worsening angina through adverse event reporting occurred less in Absorb than in Xience.

BRS stent thrombosis

Initial experience and clinical evaluation of the Absorb bioresorbable vascular scaffold (BVS) in real-world practice: the AMC Single Centre Real World PCI Registry

Robin P. Kraak, MD; Mariëlla E.C.J. Hassell, MD; Maik J. Grundeken, MD; Kar Jose P.S. Henriques, MD, PhD; Jan J. Piek, MD, PhD; Jan Baan Jr, MD, PhD; Ma E. Karin Arkenbout, MD, PhD; Jan G.P. Tijssen, PhD; Robbert J. de Winter, MD, Joanna J. Wykrzykowska*, MD, PhD

Eurointervention 2014

Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry

Davide Capodanno¹, MD, PhD; Tommaso Gori², MD, PhD; Holger Nef³, MD; Azeem Latib⁴, MD; Julinda Mehilli⁵, MD; Maciej Lesiak⁶, MD; Giuseppe Caramanno⁷, MD; Christoph Na Carlo Di Mario⁹, MD; Antonio Colombo⁴, MD; Piera Capranzano¹, MD; Jens Wiebe³, Aleksander Araszkiewicz⁶, MD; Salvatore Geraci⁷, MD; Stelios Pyxaras⁸, MD; Alessic Toru Naganuma⁴, MD; Thomas Münzel², MD; Corrado Tamburino¹, MD, PhD

Eurointervention 2015

•

Kraak RP., et al., Eurointervention 2014

AMC single center real world registry

- 135 patients, 159 lesions
- Stable angina (47%), ACS (53%)
 - More complex population (67% type B2/C lesion)
 - Bifurcation (15%)
 - CTO (8%)
 - Calcified (11%)
 - Ostial (3%)
 - Thrombus (9%)

Bulgarian Bifurcation and Complex Coronary Interventions Course 22-23 January 2016 Tokuda Hospital, Sofia

 $\sim 1/11C/0CT(5_20%)$

AMC single center real world

registry

Table 4. Clinical outcomes.

		cohort 134)	Cohort without Tryton (N=124)		
Outcome	30-day*	6-month*	30-day*	6-month*	
Cardiac death	0 (0%)	1 (0.8%)	0 (0%)	1 (0.8%)	
Myocardial infarction	3 (2.2%)	4 (3.0%)	3 (2.4%)	4 (3.3%)	
CABG	0 (0%)	0 (0.0%)	0 (0%)	0 (0.0%)	
Target lesion revascularisation	4 (3.0%)	8 (6.3%)	3 (2.4%)	6 (5.0%)	
Target vessel revascularisation	6 (4.5%)	11 (8.5%)	4 (3.3%)	8 (6.6%)	
Any revascularisation [¶]	11 (8.2%)	18 (14%)	10 (8.1%)	16 (13%)	
Definite stent thrombosis	3 (2.2%)	4 (3.0%)	3 (2.4%)	4 (3.2%)	
Probable/possible stent thrombosis	0 (0%)	0 (0.0%)	0 (0%)	0 (0.0%)	
TVF (cardiac death, MI or TVR)	6 (4.5%)	11 (8.5%)	4 (3.3%)	8 (6.6%)	

Historic data of best second/third generation metallic DES ST rate of ~ 0.5%

*Estimated Kaplan-Meier cumulative event rates. [¶]Any revascularisation included scheduled staged procedures of non-target vessels and target vessel revascularisation. Values are n (%). MI: myocardial infarction; TVF: target vessel failure; TVR: target vessel revascularisation

Kraak RP., et al., Eurointervention 2014

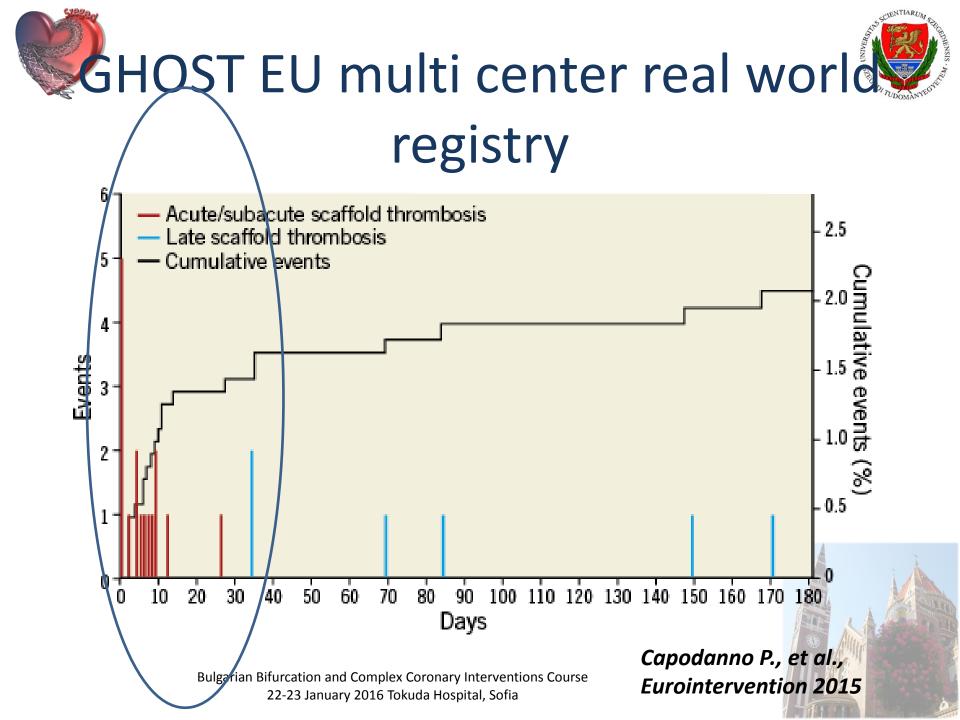
registry

- 1189 patients,
- Stable angina (53%), ACS (47%)
 - More complex population (51% type B2/C lesion)
 - Bifurcation (26.7%)
 - CTO (7.8%)

٠

- ISR (3.4%)
- Ostial (6.1%)
- Thrombus (18.3%)

Bulgarian Bifurcation and Complex Coronary Interventions Course 22-23 January 2016 Tokuda Hospital, Sofia Capodanno P., et al., Eurointervention 2015 HOST EU multi center real world registry


Table 3. Kaplan-Meier estimates of cardiac events at follow-up.

Efficacy and safety measures	30-day	6-month		
TLF	2.2%	4.4%		
TVF	2.3%	4.9%		
All death	0.8%	1.3%		
Non-cardiac death	0.2%	0.3%	Historic data	
Cardiac death	0.6%	1.0%	second/third	
Any MI	1.4%	2.7%	generation r	
Target vessel MI	1.1%	2.0%	DES ST rate	
TVR	1.6%	4.0%		
TLR	1.1%	2.5%		
ARC ST definite/probable	1.5%	2.1%		
Numbers are reported as Kaplan-Meier estimate composite endpoint (TLF) includes cardiac dea (MI) related to target vessel and clinically drive				
(MI) related to target vessel and clinically driven target lesion reinterven- tion (TLR). Target vessel failure (TVF) includes cardiac death, MI related to target vessel and clinically driven target vessel reintervention (TVR). ARC: Academic Research Consortium: ST: scaffold thrombosis				

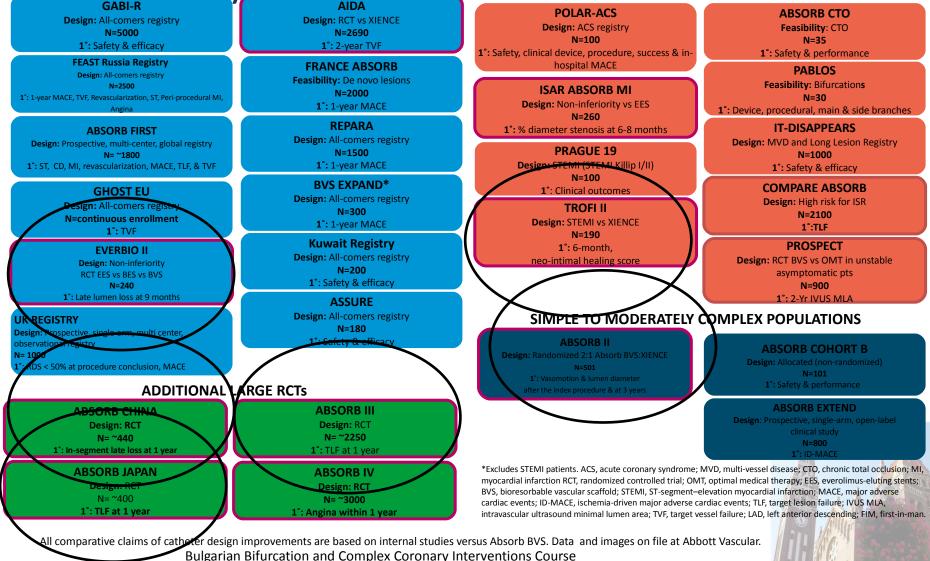
a of best ď metallic e of ~ 0.5%

ARC: Academic Research Consortium; 51: scattoid thrombosis

Capodanno P., et al., **Eurointervention 2015**

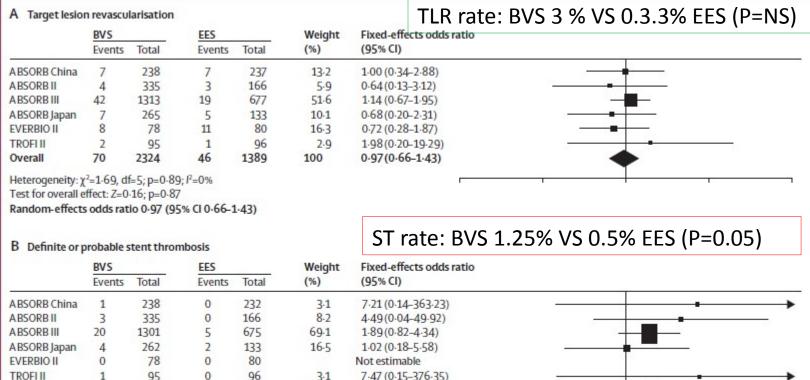
Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials

Salvatore Cassese*, Robert A Byrne*, Gjin Ndrepepa, Sebastian Kufner, Jens Wiebe, Janika Repp, Heribert Schunkert, Massimiliano Fusaro, Takeshi Kimura, Adnan Kastrati



BRS VS EES

metana wis of randomised controlled controll


22-23 January 2016 Tokuda Hospital, Sofia

BRS VS EES

metanalysis of randomised controlled trialis

1.99(1.00-3.98)

0.01

Heterogeneity: χ²=1·90, df=4; p=0·75; l²=0% Test for overall effect: Z=1·96; p=0·05 Random-effects odds ratio 1·99 (95% Cl 1·00–3·98)

2309

Figure 2: Risk estimates of primary outcomes for BVS versus EES

7

1382

29

Overall

Cassese S., et al., Lancet 2015

10

EES better

100

0.1

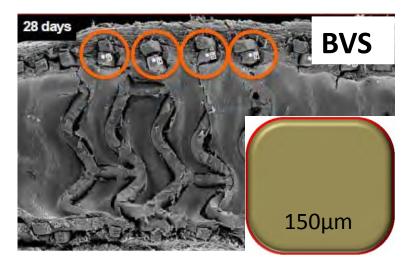
BVS better

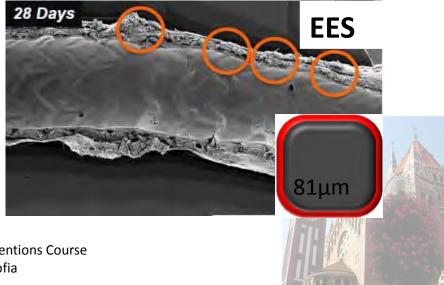
Bulgarian Bifurcation and Complex Coronary Interventions Course 22-23 January 2016 Tokuda Hospital, Sofia

100

BRS thrombosis

- Case based OCT evaluation of ST revealed similar mechanic causes as with metallic stents:
 - malapposition
 - incomplete lesion coverage
 - stent fracture
 - edge dissection
 - Premature DAPT termination




BRS thrombosis Is it the scaffolds fault?

Thicker struts of ABSORB associated with delayed healing /endotheliazation

Incomplete coverage in porcine model

Complete coverage in porcine model

BRS thrombosis

Is it the operators fault?

- Inadequate
- 1. Prepare the Lesion device
- **P**roperly Size the 2. Vessel
- 3. Post-Dilate with a **Non-Compliant** Balloon
- Pay Atten flore to 4.

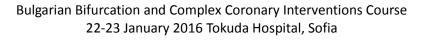
- Overconfidence in
- . Expanding of the fidications into complex anatomy, disregarding the inherent limitations of the device
 - CTO?

Expansion reation and on Sex Coronary Interventions Course 22-23 January 2016 Tokuda Negrital 6 1 esions?

Absorb everolimus-eluting bioresorbable scaffolds in coronary bifurcations: a bench study of deployment, side branch dilatation and post-dilatation strategies

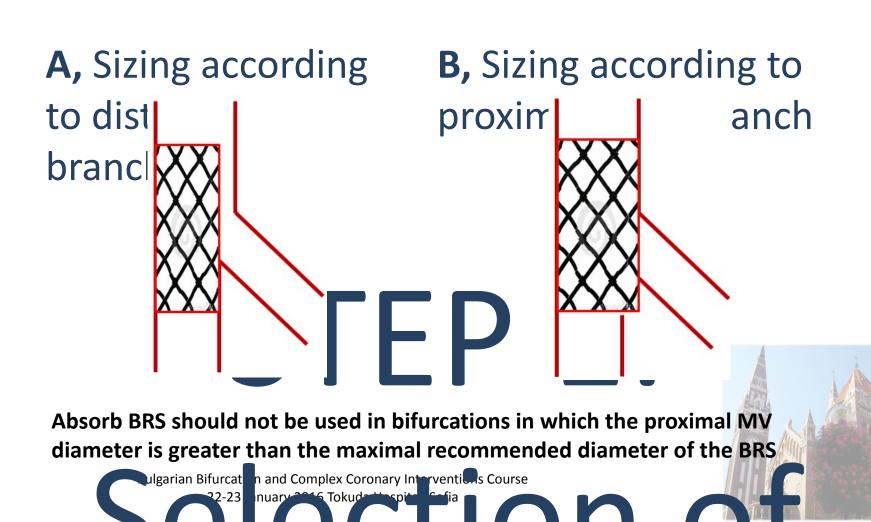
John A. Ormiston^{1,2,3}*, MBChB; Bruce Webber¹, MHSc; Ben Ubod¹, BSN; Mark W.I. Webster^{1,2,3}, MBChB; Jonathon White², MBChB

1. Mercy Angiography, Auckland, New Zealand; 2. Auckland City Hospital, Auckland, New Ze School of Medicine, Auckland, New Zealand

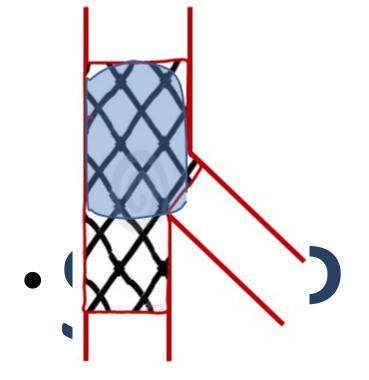

Eurointervention 2015

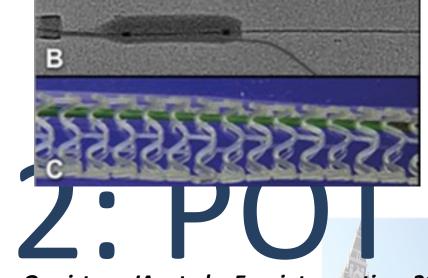
When and how to use BRS in bifurcations?

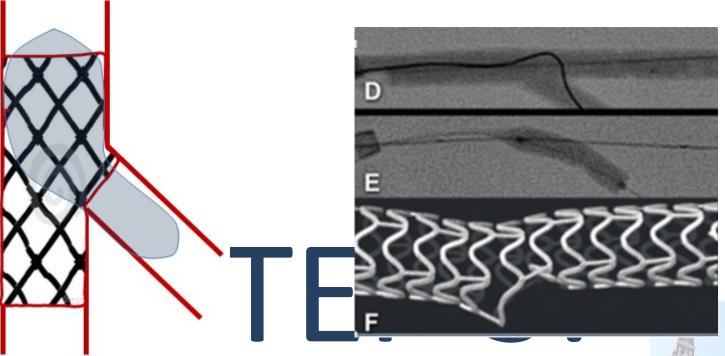
Eurointervention 2015


Goran Stankovic1*, MD, PhD; Jens Flensted Lassen2, MD, PhD

Department of Cardiology, Clinical Center of Serbia and Faculty of Medicine, University of Belgrade, Belgrade, Serbia;
 The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark

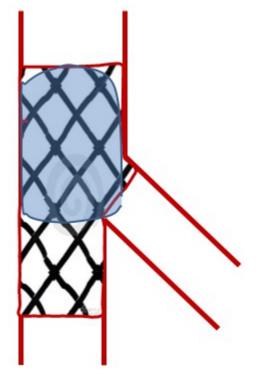





Ormistone JA, et al ., Eurointervention, 2015 Stankovic G, et al., Eurointervention, 2015

Bulgari Bifurcation and Complex Coronary Interventions ourse

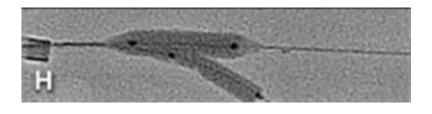
the spitch Sofi


Funderial Sifurcation and Complex Coro ry Interventions Course

Ida

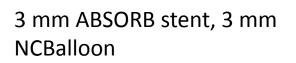
Ormistone JA, et al ., Eurointervention, 2015 Stankovic G, et al., Eurointervention, 2015

22-2

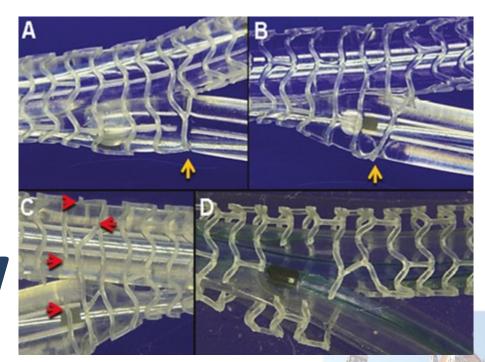

PSP technique

Ormistone JA, et al ., Eurointervention, 2015 Stankovic G, et al., Eurointervention , 2015

Bulgarian Bifurcation and Complex Coronary Interventions Course



Bulgarian Bifurcation and Complex Coronary Interventions Course 22-23 January 2016 Tokuda Hospital, Sofia **PKP technique**

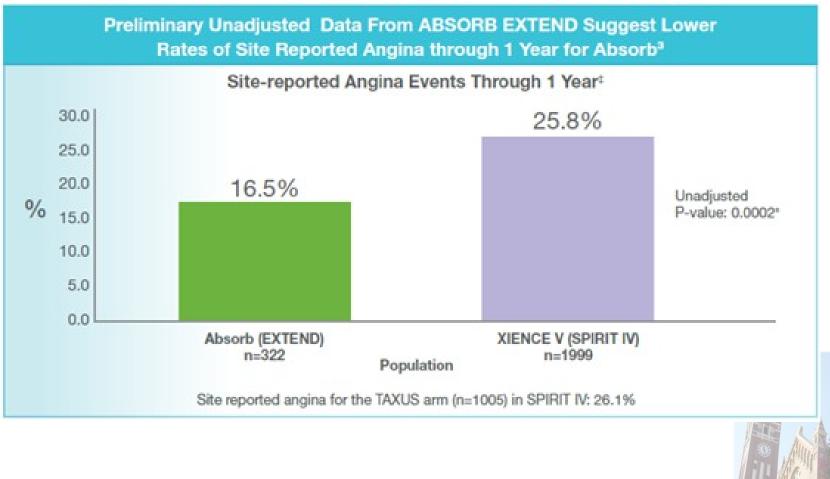


Kissing balloon inflation: < 5 atm

Side branch dilation < 10 atm.

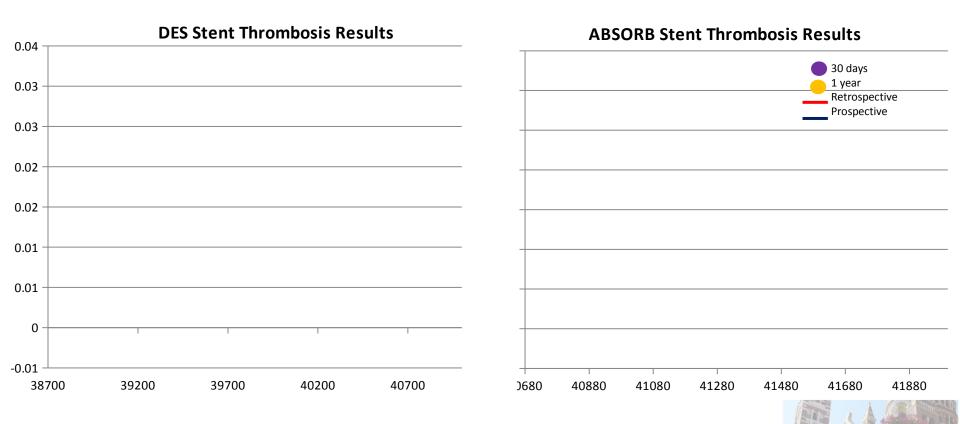
Ormistone JA, et al ., Eurointervention, 2015 Stankovic G, et al., Eurointervention, 2015

Bulgarian Bifurcation and Complex Coronary Interventions Course

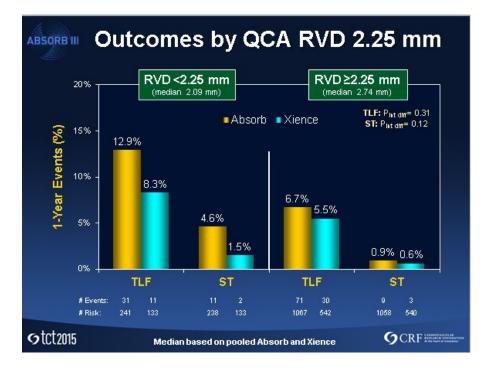

- BRS represent the new frontier in interventional cardiology and have shown acceptable safety and efficacy results in stable CAD patients.
- Caution is advised (stent thrombosis) before expanding indication of use into more complex lesions and in acute coronary syndromes.
- Further improvements to stent structure and Bulgarian Bifurcation and Complex Coronary Interventions Course absorption²²⁻²provering Stranslate into better

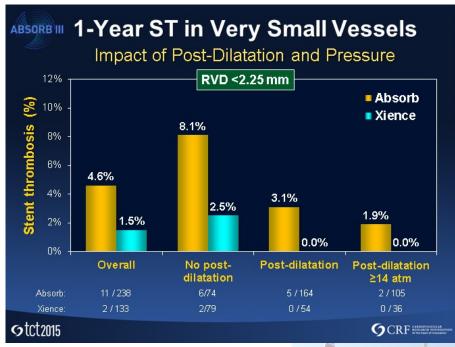
Thank you for your attention!

Absorb Clinical Update Absorb EXTEND/ anigna reporting



Absorb scaffold thrombosis


With experience there is new to Sole of Sole o



ABSORB III - 1-Year scaffold thrombosis Results

Bulgarian Bifurcation and Complex Coronary Interventions Course 22-23 January 2016 Tokuda Hospital, Sofia Kereiakes D, et al., TCT 2015

ABSORB III - 1-Year Clinical Results

1 Year Clinical Outcomes	Absorb N=1,322	XIENCE N=686	P-Value	
TLF	7.8%	6.1%	0.16	Primary Endpoint
ID-TLR	3.0%	2.5%	0.50	
TV-MI	6.0%	4.6%	0.18	
Cardiac Death	0.6%	0.1%	0.29	
Definite/Probable ST	1.5%	0.7%	0.13	Not powered
Angina (self-reported)	18.3%	18.4%	0.92	Secondary Endpoint

In vessels ≥2.25 mm by QCA*, ST = 0.9% versus 0.6% for Absorb versus XIENCE, respectively (P=0.12)

*The majority of patients (83%) in ABSORB III had vessels ≥2.25 mm

Clinical outcomes at 1 year demonstrated comparable safety and efficacy between

Absorb and XIENCE in a large, pivotal randomized clinical trial

Bulgarian Bifurcation and Complex Coronary Interventions Course 22-23 January 2016 Tokuda Hospital, Sofia Kereiakes D, et al., TCT 2015